
Implementation of a deep learning mini-framework with python

Ridha Chahed, Ghassen Karray, Haitham Hammami
EPFL EE-559 – DEEP LEARNING

Abstract— Implementing modern deep learning models
can hardly be done without a proper framework to
minimize code duplication and maximise ease of use as
well as good structure. In this project, we implemented
our own mini-framework and compared our performance
with pyTorch’s NN library, from which it was inspired.

I. INTRODUCTION

The objective of this project is to build a framework
written in python to help us design deep learning
models, instantiate and train them according to the
state of the art methods and steps to finally be able
to use them to make predictions. We begin this task
from scratch, without the use of any external library
apart from standard math library (to handle complex
mathematical operations) and torch.empty (to handle
tensor operations).

II. DATA GENERATION

To evaluate our framework, we set up the task
of training a simple neural network to classify two-
dimensional objects into one of two classes. For our
training dataset, we generated a set of 1000 points
sampled uniformly in [0, 1]2, each with label 0 if
outside the disk of radius 1√

2π
and 1 inside. For our

test dataset, we generated a set of 1000 points with the
same scheme.

III. TYPICAL USE CASE

We encounter the need to use such a framework
in supervised machine learning tasks, where we want
to approximate an unknown function f∗ : Rd → Rn
minimising what is known as the expected risk
R(f) = EX,Y (l(f,X, Y))
with l : F × Rd × Rn → R.

If we have i.i.d training samples, D = {(Xi, Yi)}Ni=1,
embedded in matrices Xtrain ∈ RN ×Rd and Ytrain ∈
RN ×Rn, we can find an estimate f̂ to f∗ by minimis-
ing what is known as the empirical risk
R̂(f) = 1

N

∑N
i=1(l(f,Xi, Yi)) = L(Ŷi, Y)

At this point, an artificial neural network can be seen
as a black box, with parameters θ ∈ RD, that computes
f̂(X|θ) = Ŷ (X ∈ Rd, Ŷ ∈ Rn).
The process of deep learning consists of beginning with
a certain combination of parameters θ0 and go through
all training samples by groups of B, Ne times, updating
θ at each step following a specific update rule giving
by an equation of the form θt+1 = U(θt,∇θL(θ)) until
we approach a good performance (with ∇θL(θ) being
the gradient of the loss with respect to parameters).

Fig. 1: Illustration of forward and backward passes [1]

We implement the process of back propagation by
dividing a training step into two substeps, the forward
pass, at the end of which we get Ŷ and the backward
pass, at the end of which we get the totality of ∇L(θ)
as illustrated in figure 1.

IV. FRAMEWORK

The main base class around of which revolves the
framework is the Module class. One whole neural
network can be seen of as an ordered collection of such
modules. We defined two other base classes, Initializer
to handle parameter initializations and Optimizer to
handle parameter updates.

A. Module

The Module class is a base class that forces the
classes that inherits from it to redefine three main meth-
ods (forward, backward, param). The forward method
deals with activations, whereas the backward method
deals with gradients. To implement backpropagation ef-
ficiently, we made sure to store any useful information

as a field to the module in the forward pass, and use it
accordingly to update the gradients with respect to the
parameters, also stored as fields, in the backward pass.
We make use of the gradients that we stored later in
the optimizer step.

B. Containers

We define a container as a module that stores a
collection of modules organized in a certain way.

1) Sequential:
• Instantiation parameters : *modules
The Sequential organizes the K modules passed to

it as argument in a sequential (ordered) manner.
• forward(X ∈ Rdim

(1)
in) : ∈ Rdim

(K)
out

iterates over all the modules of the collection, in an
ascending order, applying the forward function of
the current module on the output from the previous
module.

f(X) = f̂(X) = fK ◦ fK−1 ◦ ... ◦ f1(X) (1)

with fi being the result of the forward method of
module number i.

• backward(∂L
∂Ŷ
∈ Rdim

(K)
out) : ∈ Rdim

(1)
int

iterates over all the modules of the collection, in a
reversed order, applying the backward function of
the current module on the output from the previous
module. It yields the gradient of the loss with
respect to the parameters.

bp(
∂L

∂Ŷ
) =

∂L

∂X
= bp1 ◦ bp2 ◦ ... ◦ bpK(

∂L

∂Ŷ
) (2)

with bi being the result of the the backward
method of module number i.

C. Layers

A layer module has learnable parameters. Its forward
method depends on these parameters that we initialize
using Xavier initialization in order to avoid the layer
activation outputs from exploding or vanishing.
In the backward method we store the gradient for
these parameters

1) Fully connected linear layer:
• Instantiation parameters : dimin, dimout

• Learnable parameters : W ∈ Rdimout × Rdimin ,
b ∈ Rdimout

• forward(X ∈ Rdimin) : ∈ Rdimout

fi(X) = XW T + b

• backward(∂L
∂Ŷ
∈ Rdimout) : ∈ Rdimint

bpi(
∂L

∂Y
) =

∂L

∂X
=
∂L

∂Y
W

∂L

∂W
=
∂L

∂Y

T

X
∂L

∂b
=

N∑
i=1

(
∂L

∂yi
)

D. Activation functions

An activation module is a type of module that does
not store a gradient and thus does not learn.
It is typically used after Layer modules, so its forward
correspond to fis with even i while it’s with the odd
i for the layer module, the backward being the other
way around.
In activation modules, dimin = dimout meaning the
input and output sizes of the transformations are the
same. The activation functions we implemented can
be found in table I.

Activations forward backward
ReLU max(0, X) 1[x ≥ 0]

LeakyReLU max(0, X)+ 1[x>0] +
αmin(0, X) α1[x ≤ 0]

Sigmoid 1
1+e−x σ(x)(1− σ(x))

Tanh ex−e−x

ex+e−x
4

(ex+e−x)2

TABLE I: Activation functions

E. Losses

• Instantiation parameters : network
The loss is a metric we use to model how wrong we
are in approximating f∗. It is a function computed on
the output of the whole neural network. The losses we
implemented can be found in table II.
• forward(Ŷ ∈ Rn, Y ∈ Rn) : ∈ R

In the forward pass, we store the prediction Ŷ and
actual label Y as fields and compute L(Ŷ , Y).

• backward() : void
In the backward pass, we use Ŷ and Y stored
in the forward pass to compute ∂L

∂Ŷ
and pass

it as argument to the backward function of the
container stored at instantiation, beginning the
computation of gradients chain (backpropagation).

Losses forward backward
MSE 1

n

∑n
i=1(yi − ŷi)2 2(Ŷ − Y)

BCE −Y log Ŷ − (1− Y) log(1− Ŷ) Ŷ−Y
Ŷ−Ŷ×Ŷ

TABLE II: Loss functions

F. Optimizers

Gradient descent[2] is used to to minimize the loss
function L(θ) with θ ∈ RD the model’s parameters
by updating it in the opposite direction of the objective
function’s gradient. Nonetheless, on top on this, we can
find various algorithms to optimize this approach in
order to obtain fast convergence while avoiding being
trapped in a suboptimal minimum.

1) SGD: We can find variants of gradient descent
that differ by the amount of data used to compute the
objective function’s gradient. We have here a trade off
between accuracy and computation time. In stochastic
gradient descent, the updates are done for every training
input xi and label yi:

θ = θ − η∇θL(θ;xi, yi) (3)

In a more general setting we have the mini-batch
version that computes it using batch of n samples:

θ = θ − η∇θL(θ;xi:i+n, yi:+n) (4)

2) SGD with momentum: One main problem of gra-
dient descent is pathological curvature, that is regions
where the loss function isn’t scaled in the same way
depending on the dimension. While progress can be
made in certain directions, it can start oscillating or
even grind to a halt along others. Momentum tackles
this problem by giving to gradient descent a short-term
memory, allowing it to accelerate or reduce oscillations
in the relevant directions when needed.

vt = γvt−1 + η∇θL(θ)
θ = θ − vt

(5)

3) RMSprop: Root Mean Square Propogation aims
also to dampen the oscillations but in a different way.
It takes into consideration gradient of the past steps
by computing the exponential average of their squared
value. It then uses it to adapt the parameter using a
learning rate inversely proportional to it.

gt = γgt−1 + (1− γ)∇θL(θ)2
θt+1 = θt − η√

gt+ε
∇θL(θ) (6)

4) Adam: We can consider Adaptive Moment Es-
timation as a combination of SGDmomentum and
RMSprop as it computes the exponentially decaying
average of both the past gradients mt and the past
squared gradients gt.

Fig. 2: Optimizer comparaison with different optimizers

V. PERFORMANCE

To evaluate our framework, we set up a basic neural
network and trained it with the dataset from section 2.
We instantiated a neural network with the same param-
eters but with pyTorch’s NN library, and we compared
the results in table III

Fig. 3: Decision boundaries

Framework Accuracy Time
pyTorch 936.5 340.5

Ours 931.4 321.79

TABLE III: Table to test captions and labels

VI. CONCLUSION

The task of building a deep learning framework
from scratch turned out to be a very fruitful exercice
from which we learned several good practices we will
certainly apply in our next pyTorch projects.

REFERENCES

[1] Understanding the backward pass through Batch
Normalization Layer, Frederik Kratzert

[2] An overview of gradient descent optimization
algorithms, Sebastian Ruder, 2016, arXiv:1609.04747

	Introduction
	Data Generation
	Typical use case
	Framework
	Module
	Containers
	Sequential

	Layers
	Fully connected linear layer

	Activation functions
	Losses
	Optimizers
	SGD
	SGD with momentum
	RMSprop
	Adam

	Performance
	Conclusion

