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Abstract—Machine learning has become very important and offers
tools and techniques to deal with a lot of problems in many scientific
fields. In this paper, we explore and compare different supervised learning
algorithms and how they deal with a data-set from CERN in the field of
physics to predict the presence of the Higgs Boson.

I. INTRODUCTION

The Higgs Boson is an elementary particle which has been an
important subject of research in the physics community. Collision
experiments, like the Atlas experiment at CERN, have produced large
amounts of data which can be used to identify signals emitted by
the Higgs Boson. In this project, we are confronted with a binary
classification problem. Our aim is to predict CERN’s particle collision
events as either signals coming from the Higgs Boson, or simply as
background noise. We have used methods from exploratory data anal-
ysis, feature processing, hyper-parameter estimation through cross
validation, visualization and implementation of six basic machine
learning algorithms to obtain the results that we will describe in the
following sections of this paper.

II. MODELS AND METHODS

A. Implementing the mandatory machine learning methods

We first started by simply implementing six methods presented in
the lectures, and proceeded to a first run of each to get a first glance
of how the algorithms performed on the raw dataset.

Figure 1 : Raw results on data-set

Parameters Used
Methods λ γ Degree Max Iter Accuracy (%)
Gradient Descent NA 0.1 1 500 74.43
Stochastic GD NA 0.1 1 500 74.43
Least Squares NA NA 1 NA 74.50
Ridge Regression 0.0001 NA 7 NA 80.80
Logistic Regression NA 0.5 1 1000 72.79
Regularized Logistic Regression 0.0001 0.5 1 1000 72.75

B. Exploratory data analysis

We decided to get a better sense of the data in order to develop a
better model for this classification task.

• The data-set contains 250.000 points with 30 features. The
features are divided into 2 categories : raw quantities measured
by the experiment’s detectors, and derived variables computed
by CERN’s physicists by using the raw quantities.

• 11 out of the 30 features presented many missing values or
that those values could not be computed. Those values are
represented by -999.0.

• All of those features are floating point numbers except for the
number of jets, labeled PRI jet num, which can take 4 integer
values in {0,1,2,3}.

• PRI jet num represents the number of jet pseudo-particles
appearing in the detector. We noticed that distribution of missing
values highly depends on the jet feature. We decided to partition
our dataset based on the jet num value in order to avoid the
Simpson’s Paradox phenomenon. At first, we considered divid-
ing our data-set into 4, (one data-set per jet num value), however
the data-sets when jet num were 2 and 3 were significantly
smaller, and overall the performances were worse than when we

partitioned into 3 data-sets. Hence, tX0 corresponds to all data
points where jet num = 0; tX1 corresponds to all data points
where jet num = 1; and tX2 corresponds to all data points where
jet num = 2 or 3.

• We then plotted, for each data-set, the distribution of missing
values per feature, and the distribution of labels shown in figures
[2] and [3].

• Following figure [2], we dropped all features that were absent
in the corresponding tX data-set, and for feature 1, we replaced
each missing value by the median among the values that were
present in each data-set.

• Following feature 3, we tried to use a balanced data-set for
training each of the tX models, since the training data is skewed.
However, leaving the data as is for training yielded better
performance, hence we did not toss away data.

Figure 2 : Distribution of missing values per feature

Figure 3 : Distribution of labels per dataset
tX0 tX1 tX2 Initial Data-set

Label +1 74421 49834 40078 164333
Label -1 25492 27710 32465 85667

• For each data-set, after removal of the missing features, we
have computed the correlation matrix of the remaining features,
and tried to apply dimensionnality reduction. We removed the
features that were highly correlated with all others (where the
absolute value of the correlation coefficient was above 0.8).

Figure 4 : Correlation Matrix of tX0



C. Feature engineering

The task of predicting the presence of a Higgs Boson is too
complex to be captured by a linear model only based on our current
features. Hence, we introduced non linearity by expanding the feature
space in order to fit more complex hypotheses.We added pair terms,
i.e xi,j = xi×xj . As Taylor Series expansion can accurately approx-
imate many of the usual functions (sine,cosine,exponential,log...), we
only introduced polynomial terms of each feature xki , for k between
1 and 15. The maximum degree of 15 was determined by a 10-fold
cross-validation.

D. Applying transformations

For optimisations purposes (speeding up training), we applied
several transformations to the data, which improved the overall
accuracy and F1 score compared to when we did not apply those
transformations.

1) Rescaling the features For each of the features, we
computed its minimum and maximum value, and applied the

following function to each point :

xi,j → xi,j−min(xi)
max(xi)−min(xi)

2) Applying the log transform As some distributions of
remaining features had a large skewness, and that model
training behaves better when the data follows a normal

distribution, we applied the each point the following
transformation to eliminate the skewness :

xi,j → log(1 + xi,j)
(Note that since we have rescaled the features, the log is well

defined)
3) Standardizing the data Finally, we made our data follow a

(0;1) normal distribution by applying the transformation :

xi,j → xi,j−µ(xi)
σ(xi

E. Cross-Validation

We used a 10-fold cross validation in order to determine the
best λ,degree for our polynomial expansion, and learning rate γ.
We determined that the best degree was 15, and computed the best
lambda when doing ridge regression. We show our cross-validation
plot with our training error and test error. Note that instead of MSE,
the accuracy cost function is used. We would have expected each
of our three models to have different best degrees by the cross-
validation, however, the same degrees of 15 were selected.

Figure 5 : Cross Validation plot for tX0

F. Testing and Avoiding Data Leakage

Efforts have been made to avoid data leakage during cross valida-
tion and testing. Data leakage refers to the accident share of informa-

tion between the train set and the validation or the test set. Indeed,
for the data’s prepocessing we apply several transformations like
normalization. To do so we compute several variables per features.
If this process is done on all the data before the train/test/validation
split, we’re introducing future information into the training predictor
variables. Therefore, in the case of the normalization for example,
feature normalization is done over the training data and the mean
and variance are saved. Then we apply feature normalization to the
predictor variables of the test and validation data sets using the
training mean and variances.

III. RESULTS

The following results obtained are contained in figure 6 after
preprocessing and training.

Figure 6 : Distribution of missing values per feature

Least Squares Ridge Regression Regularized Logistic Regression
Accuracy 83.3 % 81.9 70.4 %
F1-Score 74.8 % 72.2 61.7%

We have had the best scores using least squares, quite surprisingly,
even though the performance of ridge regression was not that far
away (but training was much longer for ridge and logistic
regression). We would have expected regularized logistic regression
to perform way better, being that we are dealing with a binary
classification task. As we are dealing with a classification task,
using the mean square error cost function does not make much
sense. We might penalize well classified points, which is not
meaningful. We used an other cost metric : -accuracy, defined by
−1yi=predictLabel(xi,w). This might be the main reason as to why
least squares and ridge regression perform way better, even though
they are originally designed for regression tasks.

IV. SUMMARY AND DISCUSSION

The prediction results of the algorithms were surprising, considering
that we were dealing with a binary classification task. We had
expected logistic regression (or the regularized version of it) to
clearly outperform all the other algorithms, but our best results
came from least squares and ridge regression. Some ideas could be
explored in order to expand the project to get better scores such as :

• Implementing a neural network in order to train the model
• Expanding the feature space by adding even more feature

(instead of pairs xi,j , consider adding triplets
xi,j,k = xi × xj × xk and higher order cross terms as well. As
this would add many features, one could consider
dimensionnality reduction techniques, such as principal
component analysis

• Instead of replacing some of the missing values by the median,
consider training a model to predict the missing values, and
retrain the model afterwards.

Although those tasks were more advanced than what we have
currently seen in the lectures,they would not be impossible to
implement using only numpy, and we believe that they could likely
make us go beyond the 0.90 accuracy score.
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