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Abstract— MNIST digit classification is a classic Con-
volutional Neural Network problem. In this project we
will be using the MNIST dataset to try out different
architectures of neural nets using PyTorch in order to
predict a comparison of two handwritten digits.

I. INTRODUCTION

The objective of this project is to recognize
and compare two handwritten digits visible in
a two-channel image. More specifically we are
trying to test different models and benchmark
their corresponding performances, in particular we
will investigate the impact of integrating Siamese
Network into the architecture while adding weight
sharing and auxiliary losses.

II. DATA GENERATION

The data consists of 2 datasets each of 1000
pairs of 14×14 grey-scale images. We have built
a generator that returns the train and test datasets
which consist of pairs of images, their correspond-
ing classes and the result of the comparison, the
latter has the value 0 if the first image is strictly
bigger than the other, and 1 otherwise.

III. MODEL CONSTRUCTION

A. Initial parameters

We started by defining the skeleton of our
model, which consists of:

• Loss function: We chose to work with Binary
Cross Entropy since we are dealing with a
binary classification problem.

• Activation functions: For the hidden layers,
we initially chose Leaky ReLU to remedy
the vanishing gradient problem. As for the
output, Sigmoid was a natural choice to get
a prediction between 0 and 1.

• Optimizer: We opted for Adam as optimizer
as it proved to be a robust optimizer. Initially
we set the learning rate to be 0.001 with a
decay rate of 0.9 per epoch.

• Dropout: Which is a technique used to prevent
overfitting by applying a layer that randomly
drops a proportion of units along with their
connections during training. We chose 0.2 as
a fraction of the dropout.

• Number of Epochs: We considered 20 epochs
to be sufficient as our data isn’t very diverse.

• Batch Size: Since the data isn’t very large,
setting the batch size to 5 gave an acceptable
computational duration.

B. Basic Net

In a first approach, we built a simplistic neural
network that is made from a hidden layer of
512 nodes and an output layer. After training this
model we get an average accuracy of the test set
of 0.714 and a standard deviation of 0.014 that we
will use as a baseline in our later research.

Fig. 1: Basic Net



C. Siamese Network
A Siamese network consists of two identical

sub-networks that are joined at their output. In
addition two that we will integrating two important
features of Siamese subnets:

• Weight Sharing between the Siamese Net-
works, which consists of having the same
tensor of weights for the two sub-networks
and therefore adjusting its weights to the two
losses at the same time.

• Auxiliary Losses are losses incurred at the end
of the sub-nets and propagated to the final
loss. The two auxiliary losses are added to
the output loss as follows :

Total = α(Output) +
1− α
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This is helpful in our case since it offers
the sub-nets a better insight of the loss that
was directly caused by them during back-
propagation.

Table I is a modularisation of two different and
customizable Siamese networks with the following
architectures:

CNN FCN
Input: 14 x 14 Input: 14 x 14

Conv2d: BC x K Linear: 14*14 x HL
Leaky ReLU Leaky ReLU

MaxPool: 2 x 2 Dropout: 0.2
Dropout: 0.2

Conv2d: (2*BC) x K
Leaky ReLU
Dropout: 0.2

Linear: OC x HL
Leaky ReLU
Dropout: 0.2

KL - 1 times : KL - 1 times :
Linear: HL x HL Linear: HL x HL

Leaky ReLU Leaky ReLU
Dropout: 0.2 Dropout: 0.2

Linear: HL x 10 Linear: HL x 10

TABLE I: FCN and CNN parameterization.
BC: base channel size - K: kernel size - KL: Number of hidden lay-
ers - HL: Units in hidden layer - OC:Units in output convolutional
layer

IV. RESULTS AND DISCUSSIONS

A. Initial results

We started by setting HL = 64 and KL = 1 for
the FCN, BC = 4, K = 3,HL = 64 and KL = 1
for the CNN and α = 1
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for both auxiliary losses.

We tested our model with and without auxiliary
loss and weight sharing and table II summarises
our findings when we run for 10 rounds and
compute the score as the mean accuracy after 20
epochs of training. We observe a net improve of
the accuracy on the test set when we add the
auxiliary loss and the weight sharing for the two
subnet architectures. We make the hypothesis that
we can improve these scores by tuning the hyper-
parameters especially for the convolutional subnet
that has many.

Weight Auxiliary FCN FCN CNN CNN
Sharing Loss Score Std Score Std

0.828 0.006 0.833 0.158
X 0.870 0.007 0.882 0.011

X 0.851 0.008 0.864 0.006
X X 0.892 0.006 0.902 0.013

TABLE II: Results of FCN and CNN

B. Hyperparameter tuning

After fixing the general outline of our model,
now we seek to improve furthermore its accuracy
by applying a grid search on its hyper-parameters
in order to find the optimal values. Table III and
IV provide a summary of our findings.

Parameter Values Best Score
KL [1,2] 2 -
HL [32,64,128,256,512] 128 0.9105

C-KL [1,2] 2 -
C-HL [32,64,128,256,512] 256 0.9205
α [0:1] 0.11 0.9282

TABLE III: Optimization results of FCN.
KL: Number of hidden layers - HL: Units in hidden layer - C:
refers to layers after the combination of the subnets - α: auxiliary
loss fraction



Parameter Values Best Score
KL [1,2] 2 -
HL [32,64,128,256,512] 512 0.9298
BC [4,8,16,24,48] 24 0.9638
K [3,5] 3 -

C-KL [1,2] 2 -
C-HL [32,64,128,256,512] 512 0.9676
α [0:1] 0.44 0.9721

TABLE IV: Optimization results.
BC: base channel size - K: kernel size - KL: Number of hidden
layers - HL: Units in hidden layer - C: refers to layers after the
combination of the subnets - α: auxiliary loss fraction

For the fully connected subnet we observe that
the models without auxiliary loss tend to overfit
on the training set and thus give worst results on
the test set. On the other hand, the weight sharing
doesn’t significantly affect the accuracy on train
set but improves it on the test set.

We obtain better results with the convolutional
network subnet (figure 2) as we increased the
capacity of the network so it has less tendency
to overfit. We finally obtain an average accuracy
of 0.97. The summary of the final architecture is
depicted in figure 3

Fig. 2: Optimal CNN subnet
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Fig. 3: Model architecture

V. CONCLUSION

The MNIST dataset was and still is a reliable
example for testing and exploring the abilities of
neural networks for image recognition. In partic-
ular here we were able to prove how much of a
powerful tool neural nets can be for image compar-
ison through the utilization of Siamese Networks,
especially when combined with weight sharing
and auxiliary losses. These two features allowed
us to increase the network capacity to generalize
the ability of recognition, giving a better accuracy
score on the test set . We also concluded that a
fully connected network can give a very good per-
formance on its own. Nevertheless it cannot beat
the performance of a well-optimized convolutional
neural net when it comes to image recognition


	Introduction
	Data Generation
	Model construction
	Initial parameters
	Basic Net
	Siamese Network

	Results and discussions
	Initial results
	Hyperparameter tuning

	Conclusion

