
CS433-Machine Learning Project 2 : Recommender System
Gerald Sula - Ridha Chahed - Walid Ben Naceur

Department of Computer Science, EPFL, Switzerland

Abstract—In this project, we study the problem of building an efficient
recommender system. We are only given access to a subset of users and
their ratings, and we aim to recommend new movies by predicting the
missing ratings. To this end, we considered a collaborative-based filtering
approach along with ensemble methods. We trained 15 models, with
SVD outperforming the other ones. By using feature augmentation and
blending techniques such as XGBoost in order to build a robust predictor,
we achieved a score of 1.025 on AI-crowd’s validation set.

I. INTRODUCTION

A recommender system seeks to predict the rating or preference
a user would give to an item. The aim of this project is to build a
recommender system where the users are Netflix customers, and items
are movies proposed by Netflix. Recommender systems often rely on
collaborative filtering, which relies only on past user behaviour- for
example, users’ previous product ratings- and does not require the
creation of explicit profiles. In order to establish recommendations,
collaborative filtering systems need to compare two different types
of objects : items against users. There are two main approaches to
carry out those comparisons :

• The neighborhood approach : this method is centered on
computing the relationships between items, or alternatively,
between users. An item-item approach evaluates the preference
of a user for an item based on ratings of similar items based on
ratings of similar items by the same user. This method transform
users to the item space by viewing them as baskets of rated
items. This way, we no longer need to compare users to items,
but rather directly relate items to items.

• Latent factor models : Those methods, such as Matrix Factor-
ization or Singular Value Decomposition, consist in an alterna-
tive approach by transforming both items and users to the same
latent factor space, thus making them directly comparable. The
latent space tries to explain ratings by characterizing both items
and users on factors automatically inferred from user feedback.
For example here, factors might measure obvious dimensions
such as the amount of comedy, action, orientation to children,
or duration of a movie, less well defined dimensions such as
depth of character development, or completely uninterpretable
dimensions. For users, each factor measures how much the user
likes movies that score high on the corresponding movie factor.

We have used methods from exploratory data analysis, feature pro-
cessing, hyper-parameter estimation through cross validation, visu-
alization, implementation of collaborative filtering based algorithms
and ensemble learning to obtain the results that we will describe
in the following sections of this paper. Overall, we have used 15
models to predict new ratings on movies by users, and we have tried
4 different ways to blend the models, before choosing XGBoost in a
similar way as BellKor’s Pragmatic Chaos[2],the winners of the 2009
Kaggle competition from which this challenge is taken from. 10 out
of the 15 models were directly implemented in the Surprise Python
library, and the remaining 5 were implemented by ourselves.

II. EXPLORATORY DATA ANALYSIS

A. Data description

The data-set is composed of a list of indices (user; movie) and
the rating of that movie from that user, an integer between 1 and 5.
There are N = 10000 users and D = 1000 movies, but just 1,176,952
evaluations are available (approximately 11.8%). Our goal is to
find a model that can accurately predict the missing evaluations. We
extensively explored the data, but we will only discuss some of our
findings. All this information is condensed in table 1.

Table 1 : Statistics of the Netflix data-set

Number of users 10,000
Number of movies 1,000
Number of given ratings 1,176,952
Average of all ratings 3.857
Sparsity 88.23 %
Median of ratings per user 104
Median of ratings per movie 880

B. User behaviour

We wondered if the behaviour of users was biased, if there were
inactive users that did not rate any movie, or if there was any
particular rating pattern given by users, i.e multiple voters that only
give 1 star ratings. If a high amount of those users were to be present
in the data-set, this could bias the learning algorithms. Figure 1 shows
a histogram of the distribution of users that have rated movies, and
confirm users’ good participation. Figure 2 shows the non-uniform
distribution of the ratings given by all users. We can see that 35,743 1-
star ratings are given to movies, whereas 400,852 5-star ratings were
given. This plot shows that when users give ratings to movies, they
usually give a high rating. We wondered also if the average grade
of movies was skewed, and if some transforms had to be applied
on the data. Figure 3 shows that the movies’ averages are normally
distributed, with an average rating of 3.5 and a standard deviation of
0.5.

Figure 1 : Distribution of users that have rated movies

Figure 2 : Distribution of movies per per number of rating received

Figure 3 : Distribution of the movies’ averages

III. MODELS AND METHODS

We present in this section all the models we have trained, prior
to the blending of the models. We will describe verbosely SVD and
ALS, since SVD was the model that performed best and ALS was
implemented by our team following the guidelines of homework 10.
More complete information on the other models can be found in [1].

A. Global Mean

A simple model is to compute the mean value of all the non-zero
ratings in the training set, and return this value as a prediction.

B. User and Movie Mean

A better approach than the global mean model is to consider the
average rating given by each user for all the movies they have rated
and predict that score for the movies that this user has yet to rate.
Similarly, we do the same for the movies : for each movie, we
compute the average rating given by all users that have rated that
movie, and predict that value as a rating for any user that has yet
to rate that movie. The three means are at the same time considered
as models, and as extra features in our feature expansion scheme
described in section IV.

C. Baseline

Typical collaborative filtering data exhibit large user and item
effects, i.e systematic tendencies for users to give higher ratings than
others, and for some items to receive higher ratings than others. To
cope with this issue, we need to adjust the data, and this is done by

using baseline estimates. Let µ be the overall rating. A baseline
estimate for an unknown rating ru,i is denoted by bu,i, that we
compute the following way :

bu,i = µ+ bu + bi

Here, bu and bi indicate the observed deviations of user u and
item i from the average µ. Learning those parameters is done by
solving a least square problem by gradient descend. This algorithm
is implemented in the Python Surprise library[1].

D. Co-Clustering

The Co-Clustering collaborative filtering algorithm assigns to users
and items some clusters Cu , Ci, and Cu,i.

Clusters are assigned using a straightforward optimization method,
much like k-means, where the number of clusters is a hyper-parameter
to optimize.

This algorithm is implemented in the Python Surprise library[1].

E. SVD (Matrix Factorization) and SVD++ (Matrix Factorization
with implicit ratings)

SVD is a matrix factorization with SGD, and it includes the
learning of biases in the least square problem. This allows to take
into account latent unknown features that are not accounted by the
matrix features. Conceptually Singular Value Decomposition (SVD)
decomposes the matrix X into W and Z of the given rank which
minimizes the sum-squared distance to the target matrix X.

The prediction r̂u,i is set as:

r̂u,i = µ+ bu + bi + qTi pu

bu, bi, q
T
i , pu denote respectively the user factors, the item factors, the

user biases, and the item biases (here and in the following algorithms
as well).

If user u is unknown, then the bias bu and the factors pu are
assumed to be zero. The same applies for item i with bi and qi. To
learn all the unknown, we minimize the following regularized squared
error: ∑

ru,i∈Rtrain

(ru,i − r̂u,i)2 + λ(b2u + b2i + ‖qi‖2 + ‖pu‖2)

The minimization is performed by stochastic gradient descent. Let
eu,i = ru,i − r̂u,i

bu ← bu + γ(eu,i − λbu)

bi ← bi + γ(eu,i − λbi)
pu ← pu + γ(eu,i · qi − λpu)

qi ← qi + γ(eu,i · pu − λqi)

Baselines are initialized to 0. User and item factors are randomly
initialized according to a normal distribution. γ and λ are hyper-
parameters determined using cross-validation. This algorithm is im-
plemented in the Python Surprise library.

The SVD++ algorithm, an extension of SVD taking into account
implicit ratings. Here, an implicit rating describes the fact that a user
u rated an item j, regardless of the rating value. The prediction r̂u,i
is given by :

r̂u,i = µ+ bu + bi + qTi (pu + |Iu|−
1
2

∑
j∈Iu

yj)

This method is also implemented in the Python Surprise library[1].

F. NMF : Non-negative Matrix Factorization

A collaborative filtering algorithm based on Non-negative Matrix
Factorization. This algorithm is very similar to SVD. The prediction
r̂u,i is set as :

r̂u,i = qTi pu

where user and item factors are kept positive. The optimization
procedure is a (regularized) stochastic gradient descent with a specific
choice of step size that ensures non-negativity of factors, provided
that their initial values are also positive.

The whole implementation of this algorithm is from the Python
Surprise library[1].

G. KNN : item/user based

These K-nearest neighbors models build similarity matrices respec-
tively over the movies/users and utilize them to find the k most similar
movies/users to a given one. The distance metric used can be either
cosine, mean squared difference or pearson. We have used the pearson
baseline similarity metric for this project.

A weighted average of neighbors are then used to predict the
elements according to their similarities. Those algorithms are im-
plemented in the Python Surprise library [1].

H. Matrix Factorization - SGD and ALS

Given D items, N users and the corresponding rating matrix X ∈
RD×N , matrix factorization model aims to decompose the rating
matrix into two lower rank matrices W ∈ RD×K and Z ∈ RK×N .

For Stochastic Gradient Descent (SGD),the training objective is
a sum over |Ω| terms. We want to minimize the function L(w, z),
where :

L(w, z) =
1

|Ω|
∑

(d,n)∈Ω

1

2
[xd,n − (WZT)d,n]2

Let fd,n = 1
2
[xd,n − (WZT)d,n]2

SGD solves the minimization problem by converging almost surely
to a local minimum by doing the following updates at each step t :

W t+1 = W t − γ∇W fd,n(w, z)

Zt+1 = Zt − γ∇Zfd,n(w, z)

Alternative Least Squares (ALS) is an alternative to the SGD
to the matrix factorization problem. We try here to minimize the
following quantity :

1

2

∑
(d,n)∈Ω

[xn,d − (ZTW)n,d]2 +
λw

2
‖W‖2 +

λz

2
‖Z‖2

ALS is a two-step iterative algorithm. In every iteration, it first fixes
Z and solves for W , and then it fixes W and solves for Z. Fixing
one matrix at a time, the problem is reduced to a linear regression
and a simple least squares technique can be used.

Those two algorithms were implemented following the indications
in lab 10[3].

I. Slope One

The Slope One collaborative filtering algorithm takes into account
both information from other users who rated the same item and from
the other items rated by the same user. This algorithm is implemented
in the Python Surprise library[1].

IV. ENSEMBLE LEARNING : BLENDING THE MODELS

Our approach to this project was to use ensemble learning.
Ensemble methods use multiple learning algorithms to obtain better
predictive performance than could be obtained from any of the
constituent learning algorithms alone. We split the data into two sets
: a model train set and a blending train set, with 90% of the data
for the former and the remaining 10% for the latter. The training
for this part was done with those 10%. We implemented 4 ensemble
methods, that we compare in this section. Results for each ensemble
methods are describe in table 2.

Once we had the predictions from the 13 methods described in
section III, we first decided to treat the blending problem as a
regression task, with features being the predictions of each model.
We tried to apply the Least Squares algorithm seen in the course.

We then decided to treat the blending problem as a multi-class
classification task, where classes where the ratings in {1,2,3,4,5}.
We used the logistic regression algorithms seen in class with L2

regularization to avoid overfitting.
The ensemble method that gave the smallest RMSE is XGBoost

The base learners of XGBoost are tree ensembles. The tree ensemble
model is a set of classification and regression trees (CART). Trees
are grown one after another and attempt to reduce the misclassifica-
tion rate made in subsequent iterations.

Minimize We also tried to find the weights of the weighted sum
of the different models predictions by using the optimization method
Sequential quadratic programming (SQP), an iterative method for
constrained nonlinear optimization.

Table 2 : RMSE of the different ensembling methods tried
Ensembling RMSE
Least Squares 1.027
Logistic Regression 1.234
Minimize 1.028
XGBoost 1.025

Feature Expansion : We have added the following 13 features in
order to improve the ensembling method.

• Global Average : Average rating of all the ratings
• User Average : User’s Average rating
• Movie Average : Average rating of this movie
• Similar users rating of this movie (cosine similarity) : SimUser1,

SimUser2, SimUser3, SimUser4, SimUser5 (top 5 similar users
who rated that movie..). For each similar user need to find the
rating that he put for that movie if not available put the average
rating of that user as an estimator.

• Similar movies rated by this user (cosine similarity): Sim-
Movie1, SimMovie2, SimMovie3, SimMovie4, SimMovie5 (top
5 similar movies rated by this user..) For each similar movie
we need to find the rating that the user has given to it if not
available give the similar movie average rating.

V. PIPELINE PROCESS

All of the above sections are summarized in the diagram on figure
5, detailing the split of the data for training the models, the cross-
validation and the final blending. y denotes the final prediction that
our model outputs.

Figure 5 : Pipeline for predicting ratings

VI. RESULTS

Figure 6 : Importance of each model in the blending

The quality of the results for the Netflix-Recommender System
challenge is measured by the Root Mean Squared Error (RMSE),
and by a measure called secondary. RMSE is defined by :√√√√ ∑

(u,i)∈TestSet

(ru,i − r̂u,i)2

|TestSet|

We mostly focused on improving the RMSE. Hyper parameter
optimization was done following a 5-fold cross validation. All our
results are summarized in the following table.

Table 3 : Results for our predictions
Model Local RMSE RMSE Hyper Parameters
SlopeOne 0.992 1.060 N/A
CoClustering 0.990 1.067 n cltr u=13,

n cltr i=13,n epochs=200

SVD 0.994 1.027
n factors=20, n epochs=20,
lr all=0.002,
reg bu=0.1, reg bi=0.01

SVD++ 1.018 1.059
n factors=20, n epochs=20,
lr all=0.002,
reg bu=0.1, reg bi=0.01

NMF 1.014 1.055
n factors= 15,n epochs= 50,
reg pu=0.06,reg qi= 0.06,
reg bu= 0.02,reg bi=0.06

KNN-Movie 1.060 1.078 k movie = 300
KNN-User 1.019 1.074 k user = 100

MF-ALS 0.994 1.028

num features = 20,
(K in the lecture notes)
λ user = 0.080, λ item = 0.080,
stop criterion = 1e-5

MF-SGD 1.001 1.043

γ = 0.025 ,num features = 20,
(K in the lecture notes)
λ user = 0.1, λ item = 0.01,
num epochs = 20

Baseline 1.014 1.041 N/A
Global Mean 1.122 - N/A
Movie Mean 0.976 - N/A
User Mean 1.031 - N/A
XGBoost - 1.025 N/A

Figure 6 shows the importance of each model in the overall
XGBoost ensembling. The metric to evaluate the importance of
features (in this case, our features are the predictions from the 13
models) is the F-Score.

VII. SUMMARY AND DISCUSSION

We have shown that combining different methods can improve
RMSE of the final prediction. While individual models score an
RMSE of at least 1.027, blending achieves an RMSE of around 1.025.
The blending improves the score since models can compensate for
each other. Selecting an appropriate ensembling method is important :
multiple techniques have been explored in this project, with XGBoost
outperforming the others. Further improvements could be possible
by adding more models for the blending process, considering dif-
ferent ensembling methods, better hyper-parameter optimization and
expanding the feature space beyond what was already done, but this
might add too much complexity in the overall model, which would
be prone to overfitting.

REFERENCES

[1] Surprise Python library :
https://surprise.readthedocs.io/en/stable/prediction algorithms package.html,
accessed : 2019-12-10

[2] Y. Koren, “The BellKor Solution to the Netflix Grand Prize,”
2009.

[3] “CS433 epfl, machine learning course,” https://mlo.epfl.ch/
page-146520-en-html/, accessed: 2019-12-10.

	Introduction
	Exploratory data analysis
	Data description
	User behaviour

	Models and Methods
	Global Mean
	User and Movie Mean
	Baseline
	Co-Clustering
	SVD (Matrix Factorization) and SVD++ (Matrix Factorization with implicit ratings)
	NMF : Non-negative Matrix Factorization
	KNN : item/user based
	Matrix Factorization - SGD and ALS
	Slope One

	Ensemble Learning : Blending the models
	Pipeline process
	Results
	Summary and Discussion

